您好、欢迎来到现金彩票网!
当前位置:刘伯温论坛 > 突触 >

神经网络再进步 麻省理工“人造突触”问世

发布时间:2019-05-20 20:46 来源:未知 编辑:admin

  人脑最不可取代的便是其综合处理的能力。人脑被柔软的球状器官所包围,这个器官大约含有一千亿个神经元。在任何特定的时刻,单个神经元可以通过突触(即神经元之间的空间,突触中可交换神经递质)传递指令给数以千计的其它神经元。

  人脑中有总计超过 100 万亿的突触介导大脑中的神经元信号,在加强一些信号的同时也削弱一些其它信号,使大脑能够以闪电般的速度识别模式(pattern),记住事实并执行其它学习任务。

  最近,麻省理工(MIT)的工程师设计了一种人造突触,可以实现精确控制流过这种突触的电流强度,即类似离子在神经元之间的流动。

  该团队已经制造了一个由硅锗制成的人造突触小芯片。在模拟仿真过程中,研究人员发现该芯片及其突触可以识别手写样本,其识别准确率达到 95%。

  研究发表在《Nature Materials》上,这一成果也被认为是迈向用于模式识别和其它学习任务的便携式低功耗神经形态芯片的重要一步。

  团队最后的测试是探索如何执行实际的学习任务,比如如何识别手写样本。研究人员认为,这是神经形态芯片的首次实际测试。该芯片由输入/隐藏/输出神经元组成,每个神经元经由基于细丝的人造突触连接到其他神经元。

  研究团队还运行了基于此芯片的人工神经网络计算机仿真模拟。他们以常用的手写识别数据库中的样本作为仿真模拟测试的输入样品,在测试了成千上万个样本之后,他们发现,这一神经网络硬件系统的识别精度为 95%,而现有的软件算法精度为 97%。

  值得注意的是,这次的成果有望为近年涌现的一个新趋势再添一把火,那就是计算能力从云端向终端迁移。目前我们看到的大多数AI计算,基本是在云端实现的,但是,这个方式正在日显疲软。拿自动驾驶为例,如果避险时AI必须将信息上传至云端,由云端完成计算才能获得处理结果,现实风险是很大的。

  因此,终端的计算能力对 AI 的重要性已经得到了学界和业界的共同认可,终端计算性能的提升也成为了万众追逐的目标。一个更明显的例子是 AI 手机。作为与个人生活场景的全天候连接的智能设备,AI 手机对于在终端运行 AI 计算的需求正在变得更加多元化,例如语音、图像、视频处理等等。但是,作为移动设备,AI 手机所能携带的计算资源有限。

  麻省理工团队成果的重要价值正体现在这里。他们的人造突触设计能实现更小体积的便携式神经网络设备,这些便携式神经网络设备未来将可以完成目前只有大型超级计算机能完成的复杂计算,辅助AI能够迅猛发展。

  相关推荐:AI语音智能机器人开发实战第三期AI语音智能机器人开发实战第二期AI语音智能机器人开发实战第一期赞

http://aw2400.net/tuchu/15.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有